

IceCube Software

Last Modified: November

An Introduction to the
IceCube Software
Development
Environment

Simon Patton L.B.N.L.

This document provides an introduction to the concepts and tools that make up
the IceCube Software Development Environment. While concentrating on the
“Personal” aspect of this environment it also gives an overview of how this system
works in conjunction with the “Collaborative” environment.
14, 2002 6:46 pm
 Version:0.3

Introduction

1.0 Introduction

1.1 Purpose

The purpose of this document is to introduce the concepts and tools that make up the
IceCube Software Development Environment. However, it is not intended to be a
authoritative reference on any of these tools. That information can be obtained from
their individual documentation. (See 1.3 ‘‘References’’)

The intended audience for this document is anyone who will be using the IceCube Soft-
ware Development Environment. This includes, but is not restricted to, developers and
users of “production” IceCube software. While it is not required that developers of non-
production IceCube software use this environment, every effort has been made to make
the environment easy to use and such people are encouraged to try it out.

1.2 Scope

The scope of this document is to provide enough information about the concepts and
tools that make up the IceCube Software Development Environment so that someone
who is new to this environment can get up and running and make productive contribu-
tions to the “production” IceCube software. To this end this document will also discuss
how the tools introduced here help with the implementation of the software process that
should be followed for all “production” software.

This document concentrates on the “personal” software development environment, as
that contains those components of the IceCube Software Development Environment that
an individual developer will most commonly use. However this document will also out-
line the “collaborative” software development environment so that an individual devel-
oper can see how the two different environments interact and to highlight those parts of
the collaborative environment that provide feedback to a developer on the state of their
code in the context of the complete “production” IceCube Software effort.

As noted earlier this document is not intended to be a authoritative reference on any of
these tools.

1.3 References

The following references are used throughout this document.

[MMM] The Mythical Man Month. Fred Brooks

[IceSoft-xxx] IceCube Code Guidelines.

[IceSoft-yyy] BFD User’s Guide.

[IceSoft-zzz] FAYE User’s Guide.

1.4 Definitions and Acronyms

baseline: An agreed set of code and resources that function together.
Page 2

A Common Software Development Environment

head: The version of a project which contains the “highest” production tag, plus any
modification which have been made on top of that tag.

package: A Java concept which defines a naming and accessibility scope.

project: A collection of Java class files and resources that are all packaged into a single
jar file.

release: A “baseline” which has been given to the “clients”.

workspace: A directory in which, or below which, the process of developing a feature or
fixing a bug is executed.

1.5 Overview of this Document

The next section gives an outline of the benefits of a common development environment
to a Collaboration. It also outlines how the components that can make up such an envi-
ronment can be assigned to one or both of two distinct categories, namely the personal
and collaborative environments.

Following that section the rest of the document in divided into two Parts. The first Part
covers the components of the personal environment. It gives the details needed to use
these components, both in a standalone mode and in a baseline mode. The baseline
mode is one used to develop “production” IceCube software.

The second Part covers those components of the collaborative environment which do
not appear as part of the personal environment. This Part expands how these interact
with the personal components and what a developer should keep an eye upon to make
sure that their software is behaving correctly in the context of the complete “production”
software effort.

2.0 A Common Software Development Environment

As Fred Brooks outlined in his seminal work [MMM], as the number of people on soft-
ware effort increases linearly, the number of line of communications increases geomet-
rically. This means that, very quickly, is it very hard to keep track of everything needed
to successfully contribute to an effort. Therefore one of the ways for a large software
effort to succeed is for it to use common mechanisms for tasks such as configuring,
building and testing the code and, most importantly, communicating the past, current
and future state of the effort. It is these mechanisms which constitute a common soft-
ware development environment.

This section will discuss the benefit that can be gains, both by a collaboration and by
and individual developer, from the use of a common software development environ-
ment. It will also outline the responsibilities of a such an environment in more detail.

The general benefits of that can be gained for such an environment are the following:

• It facilitates efficient communications between developers.
Page 3

A Common Software Development Environment

As all developers can effectively talk the same language they do not have to spend
time clarifying details that are not directly relevant to the issues at hand, namely
design and maintenance of the software product.

• More time can be spent on developing the product, rather than having each devel-
oper set up their own environment.

If the environment is already available, then the developers of a product do not
have to spend their time creating on, and if one does not exist only a small number
of developers need commit time to developing one for everyone else to use.

• It is easier for developers to transition to other parts of the software effort.

When a software effort has a common environment that means that the tools and
policies a developer learns when working in one area of the effort and immedi-
ately applicable when they have to move to a different area of the effort

The next few sub-sections look at the areas of code configuration, build and testing in
more detail.

2.1 Configuring Code

When a software effort involves more than one file or more than one developer there is a
need to know which files work together and what changes have been made to those files.
To this end the software development environment should needs to include some sort of
“Software Configuration Management” tool. This will allow an individual developer to
use and, if permitted, define sets of files that function together. A set of such files is
often referred to as a “baseline”. A developer normally develops new features and cor-
rects bugs against a specific baseline. The idea of a “baseline” set of files is also used to
define the files that make up a final software product. In these cases the features and per-
formance of the entire software product are tested before the baseline is finally defined
and in this case the baseline is normally called a “release”.

2.2 Building Code

Building on the concept of baselines, it would be really useful for developers to be able
to use pre-build files, such as libraries, that have been built for the set of files that make
up a baseline, rather than each developer having to create and maintain such a set of
files. Therefore the common build system can offer such a facility. This means that
developers can concentrate on their contribution of the product, rather than spending
time worrying about whether the rest of the files they use are correct.

Having a common scheme for building contributions also means that it is easy to auto-
mate the building of the complete software product. Automation of this complete build
means that it can be easily done at regular intervals, for example every night, and thus
problems in the current version of the product such as incompatibilities between indi-
vidual contributions, can be detected at an early stage of development and corrected.
Page 4

A Common Software Development Environment

2.3 Testing Code

The benefits raised in the preceding section about having a single approach to building
code also apply to a having a common testing scheme. Moreover, having such a scheme
helps with the whole development and maintenance cycle.

On an individual level, testing allows a developer to see whether their contribution is
performing as expected. It also lets them check that none of the changes they have intro-
duced during development have broken any of the features that were already working.
This helps them avoid submitting code which will needed to be revisited at a later date.
On a collaborative level, testing is the easiest the way to demonstrate that all the individ-
ual contributions are functioning together correctly in the completed product and that
there are no unexpected side effects from combining individual contributions.

Having a testing scheme also means that when there are problems with a product, it is
easy to isolate which area is not behaving as expected and then that problem can be
assigned to the correct developer. This helps to stop the other developers from being dis-
tracted from their development by hunting for the problem in their contribution. This
also allows them to continue to work, by using a baseline which tests indicate does not
contain the problem.

2.4 Personal and Collaborative Environments

The use of a common software development environment not only means that develop-
ers can easily collaborate, but it also means that when all the individual contributions are
brought together into a completed software product, a single system can be used to vali-
date it. As has been noted in the preceding sections, the process of validating such a
product has different requirements than the process of creating the individual contribu-
tions of that product, therefore a common software development environment can be
divided into those components necessary for one or both processes. This document will
refer to those components which a developer uses to create an individual contribution to
be elements of the “personal” software development environment, while those used to
validate the entire product will be referred to the “collaborative” environment.

Part I of this document will cover the elements of the “personal” software development
environment, while Part II will cover those components that are part of the “collabora-
tive” software development environment, that have not been covered in Part I.
Page 5

The Aim of a “Personal” Software Development Environment

Part I: The “Personal” Software
Development Environment

3.0 The Aim of a “Personal” Software Development
Environment

The aim of a “personal” software development environment is to provide an individual
developer with all the tools they need to create, test and submit code that is part of a
larger collaborative software effort. Of course this does not exclude such an environ-
ment from being used to create a non-collaborative software product. In fact one of the
subsidiary aims of this “personal” software development environment is to help the
developer used “good” development practices and as such even a non-collaborative soft-
ware product can benefit from using this environment.

As noted in Section 2.0, a software development environment should provide tools to
help configure, build and test contributions to a software product. To this end the “per-
sonal” software development environment should include tools that allow a developer to
do the following:

• define a baseline upon which they can base their work;

• have access to pre-built files, i.e. libraries, in that baseline (to save space and time
during development);

• build their contributions against those pre-built files, rebuilding any files which
are dependent on their changes if required;

• run their own tests in the same environment as the collaborative tests;

• access to a code repository where they can submit their changes for archiving;

• submit their changes for inclusion in the “next” baseline;

One area that is specifically excluded from these requirements is the prescription of a
code editor. The reason for this is simple. Providing that the code produced by the devel-
oper conforms to the coding guidelines laid out in IceSoft-xxx and all the other artifacts
needed by the code, e.g. build.xml files, correctly function in the collaborative envi-
ronment, then it does not matter how a developer edits their code. Therefore the choice
of editor (and possibly IDE) can be left up to the developer.

While this software development environment is designed to be used in a collaborative
environment and exploit the idea of baselines, it is easier to walk through a standalone
example, i.e. one that does not use baselines, to give developers a feel for the environ-
ment and development process before introducing the extra complications of a baseline.
The next section is just such a walk through.
Page 6

A Standalone example of the PSDE

4.0 A Standalone example of the PSDE

All work in a development environment is done in or below a directory that is referred to
as the “workspace”. While it is not a requirement that work on each feature or bug take
place in its own workspace, experience shows that this is a wise approach. That way the
set of changes associated with each task can easily be separated, which is especially
important if one set turns out to be flawed.

4.1 Preparing a Workspace

In IceCube the workspace should be created by hand by doing a simple directory cre-
ation and the changing into that working directory.

[patton@acme]$ mkdir work

[patton@acme]$ cd work

Baseline management and access to the source code repository are tightly coupled
responsibilities, therefore there is a single tool, the “Baselined File Development” sys-
tem (bfd) which is used to handle these responsibilities. If the IceCube software is
already installed on your machine, and you have executed the standard IceCube initial-
ization then you should already have access to this tool. The easiest way to check is the
following command:

[patton@acme]$ which bfd

This will either give you some information about where it is installed or tell you that
there is no such command, in which case you should refer to Appendix A.

When running in a standalone mode bfd needs access a tools directory which contains
the third party software products that IceCube is using. Again this directory should
already be installed by the standard IceCube installation, but if is not then Appendix B
details how such a directory can be set up by hand. In either case the following com-
mand can be used to initialize a standalone workspace, where the final argument of the
command is the location of the tools directory:

[patton@acme]$ bfd init /home/icecube/tools

The workspace is now ready for use. However before using the workspace there are
some environmental variables needed by the tools. These can all be set by the following
command for sh users:

[patton@acme]$. setup.sh

or the following command for csh users:

[patton@wallaby]% source .setup.csh

4.2 Using Existing Projects

A “project” is a collection of source and resource files that are all packaged into a single
library. In the case of Java this will be a jar file. This is the basic unit of development and
each project is the responsibility of a single developer or, in some of the large cases a
small team of developers. A project should not be confused with the Java idea of a
“package” which defines naming and access scopes.
Page 7

A Standalone example of the PSDE

In order to access an existing project either because that is the project you need to work
on, or the project you are working on depends on it and you are not using the baseline
mode of bfd, then you need to make sure that your CVSROOT environmental variable is
set to the relevant repository and then issue the checkout option of the bfd system.
This option copies all the source and resource files needed to build a project into the cur-
rent workspace.In that case of the preston project which we will create in, it will eventu-
ally depend upon the icecube, faye and icecube-faye projects. To gain access
to these projects, when using the standalone mode of bfd, you will need to use the fol-
lowing commands.

[patton@acme]$ bfd checkout icebucket
[patton@acme]$ bfd checkout faye

[patton@acme]$ bfd checkout icecube-faye

After that you will need to “build” these projects. That is the topic of the next section.

4.3 Building a Project

“Building” a project means creating some or all of the files necessary to use and test a
project. A typical Java based project will generate two files, the <project>.jar and
<project>-test.jar files. The first of these jar files contains all the executable
code and resources needed to use the project, while the second jar file contains all the
code and resources needed to test that the project is functioning correctly. To create
these two jar files you simply need to execute the lib target of the project’s
build.xml. You can execute any ant target for a particular project in a one of the fol-
lowing ways.

• You change into the project’s main directory and run ant there; or

• run ant in the workspace directory specifying the project to use; or

• set the default project and then run ant in the workspace directory.

The following examples, all of which begin with the workspace as the current working
directory, demonstrate these options. The first example demonstrates the first option,
along with showing which jar files appear in the lib directory of the workspace:

[patton@acme]$ cd icebucket
[patton@acme]$ ant lib
[patton@acme]$ cd ..

[patton@acme]$ ls -l lib

The next example demonstrates the second option, again including the display of the
generated files:

[patton@acme]$ ant -DPROJECT=icebucket lib

[patton@acme]$ ls -l lib

The third option is demonstrated in the following third and final example:

[patton@acme]$ ant -DPROJECT=icebucket defaultProject
[patton@acme]$ ant lib
[patton@acme]$ ls -l lib

Once all three projects have been built, we can look to creating the preston project.
Page 8

A Standalone example of the PSDE

4.4 Creating a New Project

In the “production” environment the usual way of creating a new project is to submit a
request to the IceSoft librarian and, if approved, they will let you know when the new
project’s area is ready for use. When not working in the production environment you
may or may not wish to archive your code. If you do not want to archive you code then
you can simply create a new directory for the project in your workspace and proceed. If
you do want to archive you code outside the production environment it is assumed that
you will be responsible for you own archive and so you will be able to create a new
directory for a project within that archive. (Appendix C has details on how you can do
this using CVS.)

To create the standard contents of a new Java project using bfd, you simply need to
execute the following commands, where preston is the name of the newly created
project:

[patton@acme]$ bfd checkout preston
[patton@acme]$ ant -DPROJECT=preston defaultProject
[patton@acme]$ ant -DPACKAGE=icecube.preston.wool \
-Dpackage_dir=icecube/preston/wool createProject

This demonstrates the normal use of the defaultProject target, namely to set up
the project one which you are working as the default one, and thus keep most ant com-
mands simple. The PACKAGE parameter sets the name of the default Java package into
which any new class or interface will be placed unless explicitly stated otherwise. The
package_dir parameter is a kludge which will be obsolete once we integrate an ant
task to translate a package name into its directory path. Until then it must be specified
by hand and the value of package_dir should be the same as PACKAGE but with the
“.” replaced by “/”.

Figure 1 shows the contents of the preston project directory all of which are created by
the createProject target. The build.xml file is used by ant to build the output files
of the project (both the <project>.jar and <project>-test.jar files and well as the Java-
docs documentation). The properties file is used to set project specific values that are
used in any ant build. It is unlikely that you’ll need to edit the build.xml file as that is
standard, but you may need to edit the properties file to declare dependencies of the
project (See 4.5.2 ‘‘Declaring Dependencies’’).

FIGURE 1: The contents of the preston project after it has been created.

preston
 +---+ build.xml
 + project.properties
 + src
 | +---- icecube
 | +---- preston
 | +---- wool
 | +---+ package.html
 | + test
 | +---- package.html
 + resources
 +---- test
Page 9

A Standalone example of the PSDE

The src directory is where source files are kept. These can be both code and documen-
tation source files. Files in this directory will not normally be included in the output jar
files of a project. Conversely, the resources directory hold those files which should
be included as part of the output jar files. Files in the resources/test directory are
automatically included in the <project>-test.jar file, while all others are
included in the <project>.jar file.

Within the src tree you can see that two package.html files have been created in
the wool and wool/test directories. These are skeletons for documenting how these
two packages should be used. It is recommended to keep these files as up to date as pos-
sible, i.e. include changed as soon as they are made.

4.5 Creating a New Class

To begin the development of the preston project we are going to create a “Plug-in” for
FAYE which will simply count the number of Event records processed when the pro-
gram is run. To do this we need to create a new class in the default package of the pre-
ston project. This is done using the createClass ant target, as demonstrated by the
following command.

[patton@acme]$ ant -DCLASS=Counter createClass

This creates the following two files:

preston/src/icecube/preston/wool/test/CounterTest.java
preston/src/icecube/preston/wool/Counter.java

The first file contains a skeleton for the unit tests for the new class, while the second file
contains a skeleton for the class itself.

4.5.1 Defining the Tests for a Class

While this is not the place for a detailed discussion on software process or unit testing,
the recommended approach for code development is to write the unit test first. Yes, the
tests should be written first. The detailed benefits of this approach are described else-
where but in essence writing the tests first documents the expectations for a class and
also it minimizes the chances of feature creep. show the modifications to the skeleton
CounterTest.Java file that need to be made so that it can correctly test the Counter class
when it is written.

FIGURE 2: The Import statements to be added to CounterTest.Java

import faye.Stop;
import faye.test.MockSyncValue;
import icecube.faye.frame.IceCubeStream;
import icecube.faye.test.IceCubePlugInAdapterTest;

FIGURE 3: The new inheritance declaration for the CounterTest class

 extends IceCubePlugInAdapterTest
Page 10

A Standalone example of the PSDE
FIGURE 4: The private static data to be added to the CounterTest class

 /** An event stop to cause the event() method to be called */
 private static final Stop[] EVENT_STOPS =
 new Stop[]{new Stop(IceCubeStream.EVENT,
 new MockSyncValue(3)),
 new Stop(IceCubeStream.EVENT,
 new MockSyncValue(4))
 };

FIGURE 5: The definition of the setUp method for the CounterTest class

 protected void setUp()
 {
 testObject = new Counter();
 setAdapter(testObject);
 super.setUp();
 }

FIGURE 6: The declaration and definition of the testEventCount method for the CounterTest class, which
replaces the testSomething method

 /**
 * Tests that the Counter PlugIn increments its count correctly.
 */
 public void testEventCount()
 {
 testConfigureFromReady();

 prepareFrameSupplied();

 Assert.assertEquals(testObject.getCount(),
 0);
 testObject.frameSupplied(getFrameToken(),
 EVENT_STOPS[0]);
 prepareFrameSupplied();

 Assert.assertEquals(testObject.getCount(),
 1);
 testObject.frameSupplied(getFrameToken(),
 EVENT_STOPS[1]);

 Assert.assertEquals(testObject.getCount(),
 2);
 }

As Counter is going to be a plug-in for the FAYE it is different for a simple Java class
in that its test code, rather than inheriting from the TestCase class, inherits from the
IceCubePlugInAdapterTest class. For more details on creating and testing
FAYE plug-ins see IceSoft-zzz. The purpose of the rest of the code modifications should
be reasonably clear.
Page 11

A Standalone example of the PSDE
The new CounterTest.java file is now ready for compilation, however this will
not work for the following reasons:

• The compilation dependencies for the file have not been added into the system.

• The Counter class has not been declared yet so can not be resolved.

4.5.2 Declaring Dependencies

Dealing with the dependency issue first, ant and the JVM need to know upon which jar
files CounterTest.Java, or more correctly the preston-test.jar file, is
dependent. This is done by editing the project.properties file in the main direc-
tory of a project. From the import statements in Figure 2 we can see that the test jar file
has dependencies on the following files:

• faye.jar

• faye-test.jar

• icecube-faye.jar

• icecube-faye-test.jar

Therefore these file names need to be added to the all.dependencies and
test.dependencies entries in the properties file. Note that these entries have dif-
ferent separators, the “all” list uses a comma, while “test” list uses a space. As
preston does not depend on the logging system, this is also a good juncture to remove
the log4j declarations in this file. Figure 7 shows how the modified lines should
appear in the new version of the properties file.

FIGURE 7: The modified dependency lines in the project.properties file.

all.dependencies = faye.jar,faye-test.jar,icecube-faye.jar,icecube-faye-test.jar
,junit.jar
project.dependencies =
test.dependencies = faye.jar icecube-faye.jar faye-test.jar icecube-faye-test.jar
 ../tools/lib/junit.jar

4.5.3 Defining the new class

Now that the test for the Counter class has been created we can address creating the
class itself. Looking at the requirements Counter must satisfy if it is going to execute
the tests successfully we can see that it needs the following features.

• A public default constructor.

• An implementation of the event method of the IceCubePlugIn interface.

• A getCount method which returns the current number of times the event
method has been called.

Figure 8 to Figure 11 show the modifications to the Counter.java skeleton that are
needed for this class to conform to the interface requirements outlined above, while
Page 12

A Standalone example of the PSDE
Figure 12 shows the necessary changes to the project.properties file to account
for the import statements in Figure 8.

FIGURE 8: The import statements to be added to Counter.java.

import faye.Stop;
import icecube.faye.IceCubePlugInAdapter;
import icecube.faye.frame.IceCubeFrame;

FIGURE 9: The inheritance declaration for the Counter class.

 extends IceCubePlugInAdapter

FIGURE 10: The public default constructor for the Counter class, which replaces the original private one.

 /**
 * Create an instance of this class.
 */
 public Counter()
 {
 }

FIGURE 11: The declaration of the event and getCount methods for the CounterTest class.

 /**
 * Increments by one the number of EVENT stops processed by this PlugIn
 */
 public void event(final IceCubeFrame frame,
 final Stop stop)
 {
 }

 /**
 * @return the number of EVENT stops that have been processed by this
 * PlugIn
 */
 public int getCount()
 {
 return 0;
 }

FIGURE 12: The modified dependency line in the project.properties file.

project.dependencies = faye.jar icecube-faye.jar

At this point in time it should now be possible to at least compile the new class and its
tests using the following command (executed in the main directory of the workspace).

[patton@acme]$ ant lib
Page 13

A Standalone example of the PSDE
While this has now built the code into two new jar files, these files are not very useful as
they do not contain the functionality needed, and thus the tests will fail. To prove this
the tests can be run using the following command.

[patton@acme]$ ant test

As you can see there is one failure. To be able to get more details on this failure we can
create a test report with the following command.

[patton@acme]$ ant report

As the report target is the default one for ant we can get the same results from the fol-
lowing command.

[patton@acme]$ ant

The generated report is in the form of HTML files. Therefore to view the results you
need to open the following file in a Web browser of your choice.

docs/junit/index.html

Once you’ve done this and navigated through to the failure you’ll discover that it has the
following message:

expected:<0> but was:<1>

This is correct as the getCount method currently always returns zero. The “fix” for
this is to actually implement the interface which we declared for the Counter class.
Figure 13 and Figure 14 show the modifications necessary to achieve this.

FIGURE 13: The private data to be added to the Counter class.

 /** The number of EVENT stops that have been processed by this PlugIn */
 private int count = 0;

FIGURE 14: The definition of the event and getCount methods for the CounterTest class, (Javadocs comments
have been omitted for brevity.)

 public void event(final IceCubeFrame frame,
 final Stop stop)
 {
 count++;
 }

 public int getCount()
 {
 return count;
 }

Now running the following command

[patton@acme]$ ant

should produce success and a clean bill of health in the final report.
Page 14

A Standalone example of the PSDE
4.6 Archiving Development

(This section is only applicable if you are working on production code, or you are
archiving you own code development. If you are not archiving your own code develop-
ment then you can skip this section.)

There are stages during the development of a project where it is useful to archive the
progress made so far even though the development may not have been completed. This
can be done using the archive option of the bfd system. This will commit the current
version of the project into the code repository. However before we can do that we have
to declare to the bfd system those which files should be archived. In the case of the
preston project we need to add all the files we have created so far.

To add a file to the bfd system for archiving you simply need to use the add option.
This can be done with the following list of commands.

[patton@acme]$ bfd add preston/build.xml
[patton@acme]$ bfd add preston/project.properties
[patton@acme]$ bfd add preston/resources/test
[patton@acme]$ bfd add preston/src/icecube/preston/wool/Counter.Java
[patton@acme]$ bfd add preston/src/icecube/preston/wool/package.html
[patton@acme]$ bfd add bfd add \
preston/src/icecube/preston/wool/test/CounterTest.Java
[patton@acme]$ bfd add bfd add \
preston/src/icecube/preston/wool/test/package.html

For clarity’s sake each file has been added individually in the above example, however it
is also possible to specify all the files to be added in a single add line.

Now that these files have been added we can archive them with the following command.

[patton@acme]$ bfd archive -m "New project files" preston

The -m option provides a short message about the files being archived. If this is omitted
then an editor will be displayed so that a longer message can be composed.

It should be noted at this point that, in the bfd system, archiving files does not mean
that they immediately become part of the continuous build system, which is covered in
mode detail in Part II. To make that happen the project needs to be “delivered”. The next
section deals with this operation.

4.7 Delivering a Project

Once the development of a feature within a project has been completed all the necessary
files need to be flagged and delivered to the next stage of development which could
either be sub-system integration testing or entry into the continuous build system. Any
delivered project is expected to pass all of its own tests and not cause any of the larger-
scale tests to fail. If a delivery does not satisfy these requirements then it must be
backed-out.

Delivery of a project to the next stage of development is done by the deliver option of
the bfd system. When delivering a change it is necessary to either specify a tag that will
uniquely identify the change or specify the type of change in which case a new “produc-
tion” tag will be generated automatically (“production” tags take the form VXX-YY-
ZZ). This means that one of the following options must be used to deliver a package.
Page 15

A Standalone example of the PSDE
• -t <tag>: This option is used to provide a private tag or a production tag that
can not be generated by one of the following options.

• -b: This option is for the delivery of a “bug” modification. Delivery of a “bug”

modification normally increments the ZZ portion of a production tag1 and implies
there have been no changes to the public API of the project.

• -n: This option is for the delivery of a “minor” modification. Delivery of a
“minor” modification increments the YY portion of a production tag and implies
that there have been some changes to the public API of the project, but the main
feature set remains unchanged.

• -j: This option is for the delivery of a “major” modification. Delivery of a
“major” modification increments the XX portion of a production tag and implies
that there have been significant changes to the public API of the project, and that
the main feature set has been changed.

In the case of preston, the new public class means that there has been a change in the
public interface. However, as the development of this version of preston is not com-
plete, for instance it would be useful to add code that allows the counter to be reset, this
initial version should be delivered as a minor modification using the following com-
mand.

[patton@acme]$ bfd deliver -n preston

Which gives preston the V00-01-00 production tag. It should be noted that when a
project is delivered, its local copy is set to match the new tag. This has a number of con-
sequences, the most obvious is that it is not possible to announce new files in a project.
New files can only be added to the “head” of a project, where the “head” is defined as
the “highest” production tag plus any modification which have been made on top of that
tag.

To be able to add files to a project it is necessary to use the “head” version of the project.
This can be done using the following command.

[patton@acme]$ bfd head preston

4.8 Finishing with a Workspace

As discussed at the top of this section, it is recommended that work on each feature or
bug take place in its own workspace. This means that once the work has been completed
the workspace should be disposed of to allow it to be used for other work. The following

command2 checks that it is safe to dispose of a workspace and then removed all the files,
so that the directory can be recycled as another workspace if it is so desired.

[patton@acme]$ bfd dispose

1. The other possibilities will not be discussed here but details can be found in IceSoft-yyy.

2. This feature is not yet implemented so the workspace currently needs to be “disposed” of by
hand. A “rm -fr *” command will do this, but make sure you are in the workspace before
you contemplate such an option.
Page 16

A Baseline example of the PSDE
4.9 Summary

The bfd (baselined file development) system is the tool used to by the personal soft-
ware development environment handle file management. This section has been a simple
example of using the personal software development environment, while using the bfd
system in standalone mode. The following bfd option have been introduced:

init: initializes a workspace for standalone mode.

checkout: copies the contents of a project into the workspace.

add: declares that a file should be added to a project.

archive: copies the working version of all project files into a code archive.

deliver: signals that the current version of the project is ready for the next integration
step.

head: update a project to the “most recent” version.

dispose: clean up a workspace.

This section also introduced some of the ant targets that are in the standard workspace
build.xml file:

lib: creates the library files for a project from that project’s source files.

defaultproject: sets the project that is used in a workspace if no other is explicitly
specified.

createProject: creates the skeleton files needed to create a new project.

createClass: creates the skeleton file needed to create a new class,

test: run the all the tests for a project.

report: create an HTML report on the results of a project’s tests.

Also discussed in this section is how dependencies are declared in the
project.proporties file.

The next section discussed how this simple example changes when the bfd system is
used in baseline mode.

5.0 A Baseline example of the PSDE

...To be written...
Page 17

Part II: The “Collaborative” Software
Development Environment

6.0
Page 18

Appendix A: Installing the bfd System by Hand

The bfd system should be installed when the IceCube software distribution is installed
on a machine, along with the necessary environment settings. However if this in not
available then this appendix outlines how this system can be installed by hand.

To install a local copy of bfd, start by moving to the directory in which you want it
placed. The following is an example of where you may want to place the files:

[patton@acme]$ cd $HOME/bin

Next you need to make sure that the right environmental variables are set up to access
the IceCube repository. For sh users the following commands will do this

[patton@acme]$ export CVSROOT=:ext:acme.lbl.gov:/home/icecube/cvsroot
[patton@acme]$ export CVS_RSH=ssh

For csh users the following are necessary:

[patton@wallaby] setenv CVSROOT :ext:acme.lbl.gov:/home/icecube/cvsroot
[patton@wallaby] setenv CVS_RSH ssh

After these are set you need to “export” the bfd project from the repository into the cur-
rent directory with the following command:

[patton@acme]$ cvs export -D tomorrow bfd-tools

(The tomorow option is used to guarantee that you get the latest version of the code.)

If you have an ssh key set up on glacier.lbl.gov then you should not need to do
anything extra to get all the bfd files. However if you do not have such a key installed
you will be prompted for your password, which you should provide.

Now you need to set up the necessary links and variables to run the bfd program. This
requires setting up a soft-link, placing this link into your PATH variable and specifying a
“root” directory. For sh users these tasks can be done at the prompt using the following:

[patton@acme]$ ln -s bfd-tools/bfd.py bfd
[patton@acme]$ export PATH=${PATH}:${HOME}/bin
[patton@acme]$ export BFDROOT=/usr/icecube/bfdroot

Meanwhile csh users need to execute the following:

[patton@wallaby] ln -s bfd-tools/bfd.py bfd
[patton@wallaby] setenv PATH ${PATH}:${HOME}/bin
[patton@wallaby] setenv BFDROOT /usr/icecube/bfdroot

(Note that if ~/bin is already in your PATH variable you do not need to execute the
line which adds it to this variable). These environmental setting will be copied into the
appropriate setup files that are created by the bfd system when it initializes workspace.

The details of the contents of the BFDROOT are covered in IceSoft-yyy and are only rel-
evant if the baseline mode is being used or there are some local custom-tailoring.

The bfd system should now be ready for use.
Page 19

Appendix B: Installing the IceCube tools Directory by Hand

Access to the third party tools that are used by the IceCube software is done via the
tools directory of either the workspace or a baseline. The IceCube software distribu-
tion contains all of the third party distributions needed by IceCube software. However if
this is not installed then this appendix outlines how the tools can be installed by hand.

Currently, the default bfd scripts, and thus IceCube’s, are set up to handle to following
packages:

Ant: a dependency and build system.

JUnit: a unit testing framework for Java.

Xalan: an eXtensible Stylesheet Language Transform processor.

Log4j: a complete logging solution for Java.

Jython: an interactive scripting tool for Java.

This appendix covers the versions that were in use in September 2002. In most cases a
simple change in the version numbers where they appear is sufficient to make these
instructions work for the current versions. The following file, specified with respect to
the directory in which the bfd-tools directory was created (See Appendix A:
‘‘Installing the bfd System by Hand’’), contains the list of the current versions:

bfd-tools/std/scripts/tools_vers.sh

Before downloading the tools used by IceCube a suitable directory needs to be created,
something like /home/icecube/tools is recommended. By convention a subdi-
rectory named packaged should also be created, which will be the destination direc-
tory of the packaged tools files when they are downloaded. The tools should now be
downloaded into the packaged directory. Table 1 to Table 5 give the download informa-
tion each of the tools.

TABLE 1: Download information for ant 1.5

TABLE 2: Download information for JUnit 3.7

Web Site http://jakarta.apache.org/ant/

Download URL http://jakarta.apache.org/builds/jakarta-ant/release/v1.5/bin/jakarta-ant-1.5-bin.tar.gz

Web Site http://www.junit.org/

Download URL http://download.sourceforge.net/junit/junit3.7.zip
Page 20

TABLE 3: Download information for Xalan 2.4.0

TABLE 4: Download information for Log4j 1.2.3

TABLE 5: Download information for Jython 2.1

Once downloaded each tool should be installed. For those files with the .tar.gz suf-
fix the following command, when executed in the packaged sub-directory, will
unpack and install them:

[patton@acme]$ gunzip -cf <file> | tar -C .. -x

Files with the .zip suffix can be handled with the following command:

[patton@acme]$ unzip -d .. <file>

While to install Jython you need to execute the class file, which can be done with the
following command:

[patton@acme]$ java -cp . jython-21 -o Jython-2.1 demo lib source

(Note that in this case the .class suffix should not be specified.)

Now all the necessary files should be in the chosen tools directory and so you can pro-
ceed with the use of the bfd system.

Web Site http://xml.apache.org/xalan-j/

Download URL http://xml.apache.org/dist/xalan-j/xalan-j_2_4_0-bin.tar.gz

Web Site http://jakarta.apache.org/log4j/

Download URL http://jakarta.apache.org/log4j/jakarta-log4j-1.2.3.tar.gz

Web Site http://www.jython.org/

Download URL http://prdownloads.sourceforge.net/jython/jython-21.class?use_mirror=unc
Page 21

Appendix C: Creating a New Project using CVS

When working on non-production code it is advisable to maintain a personal code
archive. At present CVS is the choice of archive for IceCube and so this appendix gives
details on how you can create you own archive and create a new project with that
archive. (It should be noted that you need version 1.11 of CVS or later to be able to use
multiple archives transparently!)

Creating a CVS archive is very easy. All you need to do is make the root directory for
the archive and initialize it. The following commands do just that for sh users.

[patton@acme]$ mkdir ~/cvsroot
[patton@acme]$ export CVSROOT=~/cvsroot
[patton@acme]$ cvs init

Users of csh can use the same sequence of commands, replacing the export line with
the following.

[patton@wallaby] setenv CVSROOT ~/cvsroot

Having created the archive all you need to do to create a new project is to make its direc-
tory. For example, for the preston project used throughout this note the following com-
mand will be sufficient.

[patton@acme]$ mkdir ${CVSROOT}/preston

Don’t forget to set up the CVSROOT environmental variable to point to the correct
archive.
Page 22

	An Introduction to the IceCube Software Development Environment
	1.0 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 References
	1.4 Definitions and Acronyms
	1.5 Overview of this Document

	2.0 A Common Software Development Environment
	2.1 Configuring Code
	2.2 Building Code
	2.3 Testing Code
	2.4 Personal and Collaborative Environments

	3.0 The Aim of a “Personal” Software Development Environment
	4.0 A Standalone example of the PSDE
	4.1 Preparing a Workspace
	4.2 Using Existing Projects
	4.3 Building a Project
	4.4 Creating a New Project
	4.5 Creating a New Class
	4.6 Archiving Development
	4.7 Delivering a Project
	4.8 Finishing with a Workspace
	4.9 Summary

	5.0 A Baseline example of the PSDE
	6.0
	Appendix A: Installing the bfd System by Hand
	Appendix B: Installing the IceCube tools Directory by Hand
	Appendix C: Creating a New Project using CVS

